Fornr v 7 5 f .

~Louis Sudlivan

£ plieribus wan.
e composed of miany.)

Vil

OF call buack yesterdiay, bid

titne retuin.

-‘—rrr\‘fiilitun Shakespeare

Call e Fhmael

—-Herman Mehvifle

When vour call me that,
smile. -)
Dwien W

306 Internet & World Wide Web How to Program

ules iri JavaSeript
mer-Defined Functions -

$ Finction Definitions ~— ~
umber Generation. |
: Game of Chance: PRI
mple: Random Image Generator. =

9.8 javaScrpt Global Functions

e cursion

9.1 Introduction

Most computer programs that solve real-world problems are much larger than the pro-
grams presented in the first few chapters of this book. Experience has shown that the best
way to develop and maineain a large program is to construct it from small, simple pieces,
or modules. This technique is called divide and conquer. This chapter describes many key
features of JavaScript that facilitate the design, implementation, operation and mginte-
nance of large scripts. :

9.2 Program Modules in JavaScript

Modules in JavaScripe are called functions. JavaScript programs are written by combining
new functions that the programmer writes with “prepackaged” functions and objects avail-
able in JavaScript. The prepackaged functions that belong to JavaScript objects (such as
Math.pow and Math. round, introduced previously) are called methods. The term method
implies that the function belongs to a particular object. We refer to functions that belong
to a particular JavaScript object as methods; all others are referred to as functions.

JavaScript provides several objects that have a rich collection of methods for per-
forming common mathematical calculations, string manipulations, date and time manip-
ulations, and manipulations of collections of data called arrays. These objects make your
job easicr, because they provide many of the capabilities programmers frequently need.
Some common predefined objects of JavaScript and their methods are discussed in
Chapter 10, JavaScript: Arrays, and Chapter 11, JavaScript: Objects.

Good Programming Practice 9.1
MFamiﬁaﬁze yourself with the rich collection of objects and methods provided by JavaSeripr.

ftware Engineering Observation 9.1

Avoid reinventing the wheel. Use existing JavaScript objects, methods and funcrions instead of
writing new ones. This reduces script-development time and helps avoid introducing errors.

.

JavaScript: Functions 307

. Portability Tip 9.1

Using the methods built into JavaScript objects helps make scripts more portable.

You can write ﬁmctlons to define specific tasks that may be used at many points in a
script, These finctions are referred to as programmer-defined functions. The actual state-
ments defining the ﬁ1nctton¢re written only once and are hidden from other functions. .

A function is invoked (i.c., made to perform its dcs}gnatcd task) by a function call. -
The function call specifies the function name and provides information (as arguments)
that the called function needs fo perform its task.'A’common analogy for this structure is .
the hierarchical form of management. A boss (the calling function, or callet) asks 2 worker
{the called function) to perform a task and return fi.e., report back) the results when the
task is done. The boss furiction does not know how the worker function performs its des-
ignated tasks. The worker may call other worker functions—the boss will be unaware of
this. We'll soon see how this “hiding™ of implementation details promotes good software
engineering. Figure 9:1 shows. the boss function communicating with several worker
functions in a hierarchical manner: Note that worker1 dcts as a “boss” function to wo orkers
and workers5, and worker4 and worker5 report back to workerl.)

Functions are invoked- by writing the name of the function, fo]lowcd by aleft paren-
thesis, followed bya comma-separated list of zero or- more arguments, followed by a right
parenthesis. For example, a programmer, desiring to convert a string- stored in variable
inputValue to a- ﬂoatmg point number and add it to variable total might write

total += par'seF'Ioat(inputValue);

When this statement executes, JavaScript function parseFloat converts the string in the
inputValue variable to 2 floating-point value and adds that value to total. Variable
inputValue is function parseFloat’s argument. Function parseFloat takes a string repre-
sentation of a floating-point number as an argument and returns the corresponding floating-
point numeric value. Function arguments may be constants, variables or expressions.

Methods are called in the same way, but tequire the name of the object to which the
method belongs and a dot preceding the method name. For example, we've already seen
the syntax document .writeIn("Hi there.") ;. This statement calls the document object’s
writeln method to output the text.

Fig. 9.1 | Hierarchical boss-function/worker-function relationship.

308 Internet & World Wide Web How to Program

9.3 Programmer-Defined Functions

Functions allow you to modularize a program. All variables declared in function defini-
tions are local variables—this means that they can be accessed only in the function in
which they are defined. Most functions have a list of parameters that provide the means
for communicating information between functions via function calls. A function’s param-
eters are also considered to be local variables. When a fungtion is called, the arguments in
the function call are assigned to the cotresponding parameters in the function definition.

There are several reasons for modularizing a program with functions. The divide-and-
conquer approach makes program development more manageable. Another reason is soft-
ware reusability (i.c., using existing functions as building blocks to create new programs).
With good function naming and definition, programs can be created from standardized
functions rather than built by using customized code. For cxample, we did not have to
define how to convert strings to integers and floating-point numbers—JavaScript already
provides function parselnt to convert a string to an integer and function parseFloat to
convert a string to a floating-point number. A third reason is to avoid repeating code in a
program. Code that is packaged as a function can be executed from several locations in a
program by calling the function.

- Software Ehgineering Observation 9.2

If a function’s task cannot be expressed concisely, perhaps the function is performing too many
different rasks. It is usually best to break such a furction into several smailer functions.

9.4 Function Definitions

Each script we have presented thus far in the text has consisted of a Series of statements
and control structures in sequence. These scripts have been exécuted as the browser loads
the web page and evaluates the <head> section of the page. We now consider how you can
write your own customized functions and call them in a script.

Programmer-Defined Function square

Consider a script (Fig. 9.2) that uses a function square to calculate the squares of the
integers from 1 to 10. [Note: We continue to show many examples in which the body ele-
ment of the XHTML document is empty and the document is created directly by Java-
Seript. In later chapters, we show many examples in which JavaScripts interact with the
elements in the body of a document.]

The for statement in lines 15~17 outputs XHTML that displays the results of
squaring the integers from 1 to 10. Each iteration of the loop calculates the square of the
current value of control variable x and outputs the result by writing a line in the XHTML
document. Funcrion square is invoked, or called, in line 17 with the expression
square(x). When program control reaches this expression, the program calls function
square (defined in lines 23-26). The parentheses () represent the function-call operator,
which has high precedence. At this point, the program makes a copy of the value of x (the
argument) and program control transfers to the first line of function square. Function
square receives the copy of the value of x and stores it in the parameter y. Then square
calculates y * y. The result is passed back (returned) to the point in line 17 where square
was invoked. Lines 16—17 concatenate "The square of ", the value of x, the string " is ",

JavaScript: Functions 309

Square the numbers from 1 to 10

The square of 1is 1
The scuuare of 2 s 4
The squawre of 315 9
The square of 4 i 16
The square of 5 is 25
The square of 6 is 36
The square of 7 is 49
The square of 8 is 64
The square of 9 is 81
The square of 10 is 100

310 Internet & World Wide Web How to Program

the value returned by function square and a
 tag and write that line of text in the
XHTML document. This process is repeated 10 times.

The definition of function square (lines 23-2G) shows that square expects a single
parameter y. Function square uses this name in its body to manipulate the value passed
to square from line 17. The return statement in square passes the result of the calculation
y * y back to the calling function. Note that JavaScript keyword var is not used to declare
variables in the parameter list of a function.

_ Common Programming Error 9.1
& Using the JavaScript var keyword to declare a variable in a function parameter list results in a
JavaScript runtime error. .

In this example, function square follows the rest of the script. When the for state-
ment terminates, program control does nor flow sequentially into function square. A func-
tion must be called explicitly for the code in its body to execute. Thus, when the for
statement terminates in this example, the script terminates.

s Good Programming Practice 9.2

Place a blank line between function definitions to separase the functions and enbance program
- readability. '

o Software Engineering Observation 9.3

B Statements that are enclosed in the body of a function definition are not executed by the Java-
W Script interpreter unless the function is invoked explicitly.

The formar of a function definition is

function function-name(parameter-list)

declararions and statements

}

The funcrion-name is any valid identifier. The parameter-list is a comma-separated list con-
taining the names of the parameters received by the function when it is called (remember
that the arguments in the function call are assigned to the corresponding parameter in the
function definition). There should be one argument in the function call for each parame-
ter in the function definition. Ifa function does not receive any values, the parameter-list is
empty (i.e., the function name is followed by an empty set of parentheses). The declara-
tions and statements in braces form the function body.

QCommon Programming Error 9.2

Forgesting 1o return a value from a function that is supposed to return a value is a logic error.

Placing a semicolon afier the right parenthesis enclosing the parameter list of a function defini-
tion results in a JavaScripe runtime error.

MCommon Programming Error 9.3

Redefining a function parameter as 4 local variable in the function is a logic error.

MCommon Programming Error 9.4

JavaScript: Functions 311

Common Programming Error 9.5

Passing to a function an argument that is not compatible with the corresponding parameter’s
expected type is a logic error and may result in a JavaScript runtime error.

Good Programming Practice 9.3

Although it is not incorrect to do 50, do not use the same name for an argument passed to a func-
tion and the corresponding parameter in the function definition. Using different names avoids

ambiguity.

T Software Engineering Observation 9.4

B 7o promote software reusability, every function should be limited to performing a single, well-
W Jefined task, and the name of the function should express thay task effecrively. Such functions

make programs easier to write, debug, maintain and modify.

Error-Prevention Tip 9.1

@ A small function that performs onc task is easier to test and debug than a larger function that
performs many tasks. :

There are three ways to return control to the point at which a function was invoked.

If the function does not return a result, control returns when the program reaches the
function-ending right brace or by executing the statement

return;
If the function does return a result, the statement
return egxpression;

returns the value of expression to the caller. When a return statement is executed, control
returns immediately to the point at which the function was invoked.

Programmer-Defined Function maximum
The script in our next example {Fig. 9.3) uses a programmer-defined function called ma-
ximum to determine and return the largest of three floating-point values.

The three floating-point values are input by the user via prompt dialogs (lines 12-14).
Lines 16-18 use function parseFloat to convert the strings entered by the user to
floating-point values. The statement in line 20 passes the three floating-point values to
function maximum (defined in lines 28-31), which determines the largest floating-point
vatue. This value is returned to line 20 by the return statement in function maximum. The
value returned is assigned to variable maxvalue. Lines 22-25 display the three floating-
point values input by the user and the calculated maxvalue,

Note the implementation of the function maximum (lines 28-31). The first line indi-
cates that the function’s name is maximum and that the function takes three parameters (x,
y and 2) to accomplish its task. Also, the body of the function contains the statement
which returns the largest of the three floating-point values, using two calls to the Math
object’s max method. First, method Math.max is invoked with the values of variables y and
z 1o determine the larger of the two values. Next, the value of variable x and the result of
the first call to Math.max are passed to method Math.max. Finally, the result of the second
call to Math.max is returned to the point at which maximum was invoked (i.e., line 20). Note

312 Internet & Worid Wide Web How to Program

ar va‘tne} = parseFloat(inp
i F

xpiopet ey Vramips

Poplosey Ueer Fro

Fig. 9.3 | Programmer-defined maximum function. (Part | of 2.)

JavaScript: Functions 313

xplarer User Brompt

First mmber: 299.8
Second munber. 3576
Third member: 306.1
Maxiomm is: 3576

Click Refresh (or Reload) to run the script agam

Fig. 9.3 | Programmer-defined maximum function. {Part 2 of 2.)

once again that the script terminates before sequentially reaching the definition of func-
tion maximum. The statement in the body of function maximum executes only when the
function is invoked from line 20.

9.5 Random Number Generation
We now take a brief and, it is hoped, entertaining diversion into a popular programming
application, namely simulation and game playing. In this section and the next, we develop
a nicely structured game-playing program that includes multiple functions. The program
uses most of the control structures we have studied.

There is something in the air of a gambling casino that invigorares people, from the
high rollers at the plush mahogany-and-felt craps tables to the quarter poppers at the one-
armed bandits. It is the element of chance, the possibility that luck will convere a pocketful
of money into a mountain of wealth. The element of chance can be introduced through
the Math object’s random method. (Remember, we are calling random a method because it
belongs to the Math object.)

Consider the following statement:

var randomvalue = Math.random(};

Method random generates a floating-point value from 0.0 up to, burt not including, 1.0. If
random truly produces values at random, then every value from 0.0 up to, but not includ-
ing, 1.0 has an equal chance (or probability) of being chosen each time randon is called.
The range of values produced directly by random is often different than what is needed
in a specific application. For example, a program that simulates coin tossing might require

314 Internet & World Wide Web How to Program

only 0 for heads and 1 for tails. A program that simulates rolling a six-sided die would
require random integers in the range from 1 to 6. A program that randomly predicts the
next type of spaceship, out of four possibilities, that will fly across the horizon in 2 video
game might require random integers in the range 03 or 1-4.

To demonstrate method random, let us develop a program (Fig. 9.4) that simulates 20
rolls of a six-sided die and displays the value of each roll. We use the muktiplication oper-
ator (*) with random as follows:

Math.floor(1 + Math.random() * 6)

First, the preceding expression multiplies the result of a call to Math . random () by 6 to pro-
duce a number in the range 0.0 up to, but not including, 6.0. This is called scaling the
range of the random numbers. Next, we add 1 to the result to shift the range of numbers
to produce a number in the range 1.0 up to, but not including, 7.0. Finally, we use merhod
Math. f1oor to reund the result down 1o the closest integer not greater than the argument’s
value—for example, 1.75 is rounded to 1. Figure 9.4 confirms that the results are in the
range 1 1o 6.

E S

Fig. 9.4 | Random integers. shifting and scaling. (Part | of 2.)

JavaScrnpt: Functions 315

Click Refresh (or Reload) to ro the script again

6]
3 2
3 5

Clck Refresh {or Refoad) 1o nm the script again

Fig. 9.4 | Random integers, shifting and scaling. (Part 2 of 2.)

To show that these numbers occur with approximartely equal likelihood, let us simu-
late 6000 rolls of a die with the program in Fig. 9.5. Each integer from 1 to 6 should
appear approximately 1000 times. Use your browser’s Refresh (or Reload) button to exe-
cute the script again.

Fig. 9.5 | Rolling a six-sided die 6000 times. (Part [of 3.)

tde Web How to Program

Internet & World Wi

6

,randomtjl* 6)

=
W
5
=
i
-t
[
W
—
[

~face = Math

(Part 2 of 3.}

IMEes.

ing a six-sided die 6000 ti

Fig. 9.5 | Roll

JavaScript: Functions 317

i xpio

Click Refiesh {or Reload) to num the script agsin

Fig. 9.5 | Rolling a six-sided die 6000 times. (Part 3 of 3.)

As the output of the program shows, we used Math method random and the scaling
and shifting techniques of the previous example o simulate the rolling of a six-sided die.
Note thar we used nested control structures to determine the number of times each side
of the six-sided die occurred. Lines 12-17 declare and initialize counter variables to keep
crack of the number of times each of the six die values appears. Line 18 declares a variable
(o store the face value of the die. The for statement in lines 2146 iterates 6000 times.
During each iteration of the loop, line 23 produces a value from I to 6, which is stored in

318 Internet & World Wide Web How to Program

face. The nested switch statement in lines 25-45 uses the face value that was randomly
chosen as its controlling expression. Based on the value of face, the program increments
one of the six counter variables during each iteration of the loop. Note that no default
case is provided in this switch statement, because the statement in line 23 produces only
the values 1, 2, 3, 4, 5 and 6. In this example, the default case would never execute. After
we study Arrays in Chapter 10, we discuss a way to replace the entire swi tch statement in
this program with a single-line statement.

Run the program several times, and observe the results. Note thar the program pro-
duces different random numbers each time the script executes, so the results should vary.

The values returned by random are always in the range

0.0 < Math.random() < 1.0
Previously, we demonstrated the statement

face = Math.floor(1 + Math.random{) * 6):

which simulates the rolling of a six-sided die. This statement always assigns an integer (at
random) to variable face, in the range 1 < face < 6. Note that the width of this range (i.e.,
the number of consecutive integers in the range) is 6, and the starting number in the range
is 1. Referring to the preceding statement, we see that the width of the range is determined
by the number used to scale random with the multiplication operator (6 in the preceding
statement) and that the starting number of the range is equal to the number (1 in the pre-
ceding statement) added to Math. random() * 6. We can generalize this result as

face = Math.floor(a + Math_.r'andom() * b);

where a is the shifting value (which is equal to the first number in the desired range of
consecutive integers) and b is the scaling factor (which is equal to the width of the desired
range of consecutive integers). In this chapter’s exercises, you'll see that it’s possible to
choose integers at random from sets of values other than ranges of consecutive integers.

9.6 Example: Game of Chance

One of the most popular games of chance is 2 dice game known as craps, which is played
in casinos and back alleys throughout the world. The rules of the game are straightforward:

A player rolls two dice. Each die has six faces. These faces contain one, two, three, four,
five and six spots, respectively. After the dice have come to rest, the sum of the spots on
the two upward faces is calculased. If the sum is 7 or 11 on the first throw, the player
wins, If the sum is 2, 3 or 12 on the first throw (called ‘craps”), the player loses {i.e.,
the “house” wins). If the sum is 4, 5, 6, 8, 9 or 10 on the first throw, that sum becomes
the player’s ‘point.” To win, you must continue roliing the dice until you “make your
point” (i.e., roll your point value). You lose by rolling a 7 before making the point,

The script in Fig, 9.6 simulates the game of craps.

Note tha the player must roll two dice on the first and all subsequent rolls. When you
execute the script, click the Rolt Dice button to play the game. A message below the Roll
Dice burton displays the status of the game after each roll.

Until now, all user interactions with scripts have been through either a prompt dialog
(in which the user types an input value for the program) or an atert dialog (in which a

JavaScript: Functions 319

message is displayed to the user, and the user can click OK to dismiss the dialog). Although
these dialogs are valid ways to receive input from a user and to display messages, they are
fairly limited in cheir capabilities. A prompt dialog can obtain only one value at a ime from
the user, and a message dialog can display only one message.

More frequently, multiple inputs are received from the user at once via an XHTML
form (such as one in which the user enters name and address information) or to display
many pieces of data at once (e.g., the values of the dice, the sum of the dice and the point
in this example). To begin our introduction to more elaborate user interfaces, this program
uses an XHTML form (discussed in Chaprer 4) and a new graphical user interface con-
cept—GUI event handling. This is our first example in which the JavaScripr executes in
response to the user’s interaction with a GUI componentin an XHTML form. This inter-
action causes an event. Scripts are often used to respond to events.

Fig. 9.6 | Craps game simulation. (Part | of 4.)

320 Internet & World Wide Web How to Program

Fig. 9.6 | Craps game simulation, (Part 2 of 4.)

JavaScript: Functions 321

Player wins. Click Refl Dice to play again

Fig. 9.6 | Craps game simulation. (Part 3 of 4.)

322 Internet & World Wide Web How to Program

Sumjs
Poitle
Roli Dice
Roll again

i3 GLes

Fig. 9.6 | Craps game simulation.

Sk B

(Part 4 of 4.)

Before we discuss the script code, we discuss the body element (lines 105—126) of the
XHTML document. The GUI components in this section are used extensively in the
script.

Line 106 begins the definition of an XHTML form element. The XHTML standard
requires that every form contain an action attribute, but because this form does not post
its information to a web server, the empry string ("") is used.

JavaScript: Functions 323

In this example, we have decided to place the form’s GUI components in an XHTML
table element, so line 107 begins the definition of the XHTML table. Lines 109-120
create four table rows, Each row contains a left cell with a text label and an input element
in the right cell.

Four input fields (lines 110, 113, 116 and 119) are created to display the value of the
first die, the second die, the sum of the dice and the current point value, if any. Their id
attributes are sct to dielfield, die2field, sumfield, and pointfield, respectively. The
id attribute can be used to apply CSS styles and to enable script code to refer to an element
in an XHTML document. Because the 1d attribute, if specified, must have a unique value,
JavaScript can reliably refer to any single element via its id attribute. We see how this is
done in 2 moment.

Lines 121-122 create a fifth row with an empty cell in the left column before the Roll
Dice button. The button’s enclick attribute indicates the action to rake when the user of
the XHTML document clicks the Roll Dice button. In this example, clicking the butten
causes a call to function play.

This style of progtamming is known as event-driven programming-—the user interacts
with a GUI component, the script is notified of the event and the script processes the event.
The user’s interaction with the GUI “drives” the program. The button click is known as the
event. The function that is called when an event occurs is known as an event-handling
function or event handler. When a GUI event occurs in a form, the browser calls the spec-
ified event-handling function. Before any event can be processed, each GUI component
must know which event-handling function will be called when a particular event occurs.
Most XHTML GUI components have several different event types. The event model is dis-
cussed in detail in Chapter 13, JavaScript: Events. By specifying onclick = "play()” for
the Rolf Dice button, we instruct the browser to listen for events (button-click events in par-
ticular). This registers the event handler for the GUI component, causing the browser to
begin listening for the click event on the component. If no event handler is specified for the
Roll Dice button, the script will not respond when the user presses the burton.

Lines 123-125 end the table and form clements, respectively. After the table, a div
element is created with an id attribute of "status”. This element will be updated by the
script to display the result of each roll to the user. A style declaration in line 13 colors the
text contained in this div red.

The game is reasonably involved. The player may win or Jose on the first roll, or may
win or lose on any subsequent roll. Lines 18-20 create variables that define the three game
states—game won, game lost and continue rolling the dice. Unlike many other program-
ming languages, favaScript does not provide a mechanism to define a constant (i.c., a vari-
able whose value cannot be modified). For this reason, we use all capital letters for these
variable names, to indicate that we do not intend to modify their values and to make them
stand out in the code—a common industry practice for genuine constants.

2. Good Programming Practice 9.4

Use only uppercase letters (with underscores between words} in the names of variables that should
be used as constants. This format makes such variables stand out in a program.

. Good Programming Practice 9.5

Use meaningfully named variables rather than literal m[ua;m(nsmurb as2) 10 make programs more

" readable.

324 Internet & World Wide Web How to Program

Lines 23-26 declare several variables that are used throughout the script. Variable
firstRol11 indicates whether the next roll of the dice is the first roll in the current game.
Variable sum0fDice maintains the sum of the dice from the last roll. Variable myPoint
stores the point if the player does not win or lose on the first roll. Variable gameStatus
keeps track of the current state of the game (WON, LOST or CONTINUE_ROLLING).

We define a function ro11Dice (lines 86-101} to roll the dice and to compute and
display their sum. Function ro11Dice js defined once, but is called from two places in the
program (lines 38 and 61). Function ro11Dice takes no arguments, so it has an empty
parameter list. Function ro11Dice returns the sum of the two dice.

The user clicks the Roll Dice button to roll the dice, This action invokes function play
(lines 29-83) of the script. Lines 32 and 35 create two new variables with objects repre-
senting elements in the XHTML document using the document object’s getElementById
method. The getElementById method, given an id as an argument, finds the XHTML
element with a matching id attribute and returns a JavaScript object representing the ele-
ment. Line 32 stores an object representing the pointfield input element (line 119) in
the variable point. Line 35 gets an object representing the status div from line 124. In
a moment, we show how you can use these objects to manipulate the XHTML document.

Function play checks the variable ¥irstRo11 (line 36) to determine whether it is true
or false. If true, the roll is the first roll of the game. Line 38 calls ro11Dice, which picks
two random values from 1 to 6, displays the value of the first die, the value of the second
die and the sum of the dice in the first three text fields and returns the sum of the dice.
(We discuss function ro11Dice in detail shortly.) After the first roll (if firstRo17 is false),
the nested switch statement in lines 40-57 determines whether the game is won or lost,
or whether it should continue with another roll. After the first roll, if the game is not over,
sumOfD1ice is saved in myPoint and displayed in the text field point in the XHTML form.

Note how the text field’s value is changed in lines 45, 50 and 55. The object stored in
the variable point aflows access to the pointfield text field’s contents. The expression
point.value accesses the value property of the text field referred to by point, The value
property specifies the text to display in the text field. To access this properry, we specify
the object representing the text field (point), followed by a dot {.) and the name of the
property to access (value). This technique for accessing properties of an object (also used
to access methods as in Math. pow) is called dot notation. We discuss using scripts to access
elements in an XHTML page in more detail in Chapter 13.

The program proceeds to the nested if...e1se statement in lines 70-82, which uses
the statusDiv variable to update the div thar displays the game status. Using the object’s
innerHTML property, we set the text inside the div to reflect the most recent status. In lines
71, 7576 and 78-79, we set the div’s innerHTML to

Ro11 again.
if gameStatus is equal to CONTINUE_ROLLING, to

Player wins. Click Roll Dice to play again.
if gameStatus is equal to WON and to

Player loses. Click Rol11 Dice to play again.

if gameStatus is equal to LOST. If the game is won or lost, line 81 sets firstRol1 to true
to indicate that the next roll of the dice begins the next game.

JavaScript: Functions 325

The program then waits for the user to click the button Roll Dice again. Each time the
user clicks Roll Dice, the program calls function play, which, in turn, calls the re11Dice
function to produce a new value for sumOfDice. If sumQfDice marches myPoint,
gameStatus is set to WON, the if...else statement in Jines 70~82 executes and the game is
complete. If sum is equal to 7, gameStatus is set to LOST, the if...e1se statement in lines
70-82 executes and the game is complete. Clicking the Roll Dice bucton starts a new game.
The program updates the four text fields in the XHTML form with the new values of the
dice and the sum on each roll, and updates the text field point each time a new game
begins.

Function rol1Dice (lines 86-101) defines its own local variables diel, die2 and
worksum (lines 88-90). Because they are defined inside the re11Dice function, these vari-
ables are accessible only inside that function. Lines 92-93 pick two random values in the
range 1 to G and assign them to variables diel and die2, respectively. Lines 96-98 once
again use the document’s getElementById method to find and update the correct input
elements with the values of diel, die2 and workSum. Note that the integer values are con-
verted automatically to strings when they are assigned to each text field’s value property.
Line 100 returns the value of workSum for use in function play. ’

Software Engineering Observation 9.5

Variables that are declared inside the body of a function are known only in that function. Ifthe
B (e variable names are used elsewhere in the program, they will be entirely separate variables
in memory.

Note the use of the various program-control mechanisms. The craps program uses
two functions—play and ro11Dice—and the switch, if...e1se and nested i f statements.
Note also the use of multiple case labels in the switch statement to execute the same state-
ments (lines 42 and 47). In the exercises at the end of this chapter, we investigate various
interesting characteristics of the game of craps.

Error-Prevention Tip 9.2
@ Initializing variables when they ave declared in functions helps avoid incorrect results and

interprever messages warning of uninitialized data.

9.7 Another Example: Random Image Generator

Web content that varies randomly adds dynamic, interesting effects to a page. In the next
example, we build 2 random image generator, a scripe that displays a randomly selected
image every time the page that contains the script is loaded.

For the script in Fig. 9.7 to function properly, the directory containing the file
RandomPicture.html must also contain seven images with integer filenames (i.e., 1.gif,
2.gif, ..., 7.0if). The web page containing this script displays one of these seven images,
selected at random, each time the page loads.

Lines 12-13 randomly select an image to display on a web page. This docu-
ment.write statement creates an image tag in the web page with the src artribute set to a
random integer from 1 to 7, concatenated with ".gif". Thus, the script dynamically sets
the soutce of the image tag to the name of one of the image files in the current directory.

326 Internet & World Wide Web How to Pragram

docurt;ent.wr"ité (“<1;mg sre o=\
Math.floor{ 1 + Math.random() * 7) + “.gif\" /"):

" Randomdmage Generatos - daws Internet Dxplorer

Chck Refresh (ot Reload)

focne

Fig. 9.7 | Random image generation using Math . random.

9.8 Scope Rules

Chapters 6-8 used identifiers for variable names. The attributes of variables include name,
value and data type (e.g,, string, number or boolean). We also use identifiers as names for
user-defined functions. Each identifier in a program also has a scope.

The scope of an identifier for a variable or function js the portion of the program in
which the identifier can be referenced. Global variables or script-level variables that are
declared in the head element are accessible in any part of a script and are said o have global
scope. Thus every function in the script can potentially use the variables.

JavaScript: Functions 327

{dentifiers declared inside a function have function {or local} scope and can be used
only in that function. Function scope begins with the opening left brace ({) of the funcrion
in which the identifier is declared and ends at the terminating right brace (}) of the func-
tion. Local variables of a function and function parameters have funcrion scope. If 2 local
variable in a function has the same name as a global variable, the global variable is “hidden™
from the body of the function.

Good Programming Practice 9.6

W.| Avoid local-variable names that /Jic;c:}vl;g;l- variable names. This can be ﬂ;;;w;h}:};;bed by simply
~ aveiding the use of duplicate identifiers in a script.

The script in Fig. 9.8 demonstrates the scope rules thar resolve conflicts between
global variables and local variables of the same name. This example also demonstrates the
onload event (line 52), which calls an event handler (start} when the <body> of the
XHTML document is completely loaded into the browser window.

‘2
6

B 1 4
9
” o

3t

uyuy

328 Internet & World Wide Web How to Program

Wondmas

[eanloschomaceping hon W |

locs] x o foncticnA is 25 after ing fonctionA
local x in fanctionA is 26 befare exiting fimctionA,

global vasiable x is 1 on ing fanctionB
global vaxiable x & 10 on exiting fanctions

local x in fimctionA is 25 after entering fnctionA
focat x in fanctiond is 26 before exiting foncticn A

ghobal varishle x is 10 on entering fanctionB
global variable x is 100 oo exiting fancticaB

local x in start is §

Fig. 9.8 | Scoping example. (Part 2 of 2.)

Global variable x (line 12) is declared and initialized to 1. This global variable is
hidden in any block (or function) that declares a variable named x, Function start (line
14--27) declares a local variable x (line 16) and initializes it to 5. This variable is output in
a line of XHTML text to show that the global variable x is hidden in start. The script
defines two other functions—functionA and functionB—that each take no arguments
and return nothing. Each function is called twice from function start.

Function functionA defines local variable x (line 31) and initializes it to 25. When
functionA is called, the variable is output in a line of XHTML text to show that the global
variable x is hidden in functionA; then the variable is incremented and output in a line of
XHTML text again before the function is exited. Each time this function is called, local

variable x is re-created and initialized to 25.

JavaScript: Functions 329

Function functionB does not declare any variables. Therefore, when it refers 10 vari-
able x, the global variable x is used. When function is called, the global variable is output
in a line of XHTML text, multiplied by 10 and output in a line of XHTML text again
before the function is exited. The next time function functionB is called, the global vari-
able has its modified value, 10, which again gets multiplied by 10, and 100 is output.
Finally, the program outputs local variable x in start in a line of XHTML text again, to
show that none of the function calls modified the value of x in start, because the func-
tions all referred to variables in other scopes.

9.9 JavaScript Global Functions

JavaScript provides seven global functions. We have already used two of these functions—
parseInt and parseFloat. The global functions are summarized in Fig, 9.9.

Actually, the global functions in Fig. 9.9 are all part of JavaScript’s Global object. The
Global object contains all the global variables in the script, all the user-defined functions
in the script and all the functions listed in Fig. 9.9. Because global functions and user-
defined functions are part of the Global object, some JavaScript programmers refer to
these functions as methods. We use the term method only when referring to a function
that is called for a particular object (e.g., Math.random(}). As a JavaScript programmer,
you do not need to use the Globa) object directly; JavaScript references it for you.

isFinite

[

x

Fig. 9.9 | JavaScript global functions. (Part | of 2.}

330 internet & World Wide Web How to Program

parseFioat Takes 2 string argument and attempts to convert the beginning of the
string into a floating-point value. If th= conversion is unstccessful, the
function returns NaN; otherwise, it returns the converted value (e.g.,
parseFloat("abc123.45" 3 returns NaN, and parsaFloat(*123.45abc” b]

returns the value 123.45),° 77 ¢

parselnt Takes a string argument and attemps to convert the beginning of the
string into an integer value, If the conversion is unsuccessful, the func-
tion returns NaN; otherwise, it returns the converied value (e,g., par-
seInt{ "abc123") recirns NaN, and parseInt(*123abc” ¥ rerurns the
integer value 123). This function rakes an optional second argument,

. from 2.to 36, specifying the radix {or base) of the number, Base 2 indi-
cates that the first argument string is in binary format, base 8 indicates
that the first argument string is in octal formar and base 16 indicaces that
the first argumenc string is in hexadecimal format.

unescape. - Takes a string avits argument and returns a string in which all characters
 previously encoded with escape are decoded. .- - .1 1 - '

Fig. 9.9 | javaScript global functions. (Part 2 of 2.)

9.10 Recursion

The programs we have discussed thus far are generally structured as functions that call one
another in a disciplined, hierarchical manner. A recursive function is a function that calls
irself, either directly, or indirectly through another funcrion. Recursion is an important
topic discussed at length in computer science courses. In this section, we present a simple
example of recursion.

We consider recursion conceptually first; then we examine several programs
containing recursive functions. Recursive problem-solving approaches have a number of
elements in common. A recursive function is called to solve a problem. The function
actually knows how to solve only the simplest case(s), or base case(s). If the function is
called with a base case, the function returns a result. If the function is called with a more
complex problem, it divides the problem into two conceptual pieces—a piece that the
function knows how to process (the base case) and a piece that the function does not
know how to process. To make recursion feasible, the latter piece must resemble the
original problem, but be a simpler or smaller version it. Because this new problem looks
like the original problem, the function invokes (calls) a fresh copy of itself to go to work
on the smaller problem; this invocation is teferred to as a recursive call, or the recursion
step. The recursion step also normally includes the keyword return, because its result
will be combined with the portion of the problem the function knew how to solve to
form a result thac will be passed back to the original caller.

JavaScript: Functions k]|

The recursion step executes while the original call to the function is still open (i.c., it
has not finished executing). The recursion step can result in many more recursive calls as
the function divides each new subproblem into two conceptual pieces. For the recursion
eventually to terminate, each time the function calls itself with a simpler version of the
original problem, the sequence of smaller and smaller problems must converge on the base
case. At that point, the function recognizes the base case, returns a result o the previous
copy of the function, and a sequence of returns ensues up the line until the original func-
tion call eventually returns the final result to the caller. This process sounds exotic when
compared with the conventional problem solving we have performed to this point.

As an example of these concepts at work, let us write a recursive program to perform
a popular mathematical calculation. The factorial of a nonnegative integer », written #!
(and pronounced “7 factorial™), is the product

peln=1)(m=2y....-1

where 1! is equal to 1 and 0! is defined as 1. For example, 5! is the product 5-4-3.2. 1,
which is equal o 120,

The factorial of an integer (number in the following example) greater than or equal to
zero can be calculated iteratively (nonrecursively) using a for statement, as follows:

var factorial = 1;

for { var counter = number: counter »= 1; --counter)
factorial *= counter;

A recursive definition of the factorial function is arrived at by observing the following
relationship: -

l=n-(n-1)!

For example, 5/ is clearly equal to 5 * 4!, as is shown by the following equations:

5/=5-4.3.2.1
51=5.(4.3.2.1)
50=5.(4)

The evaluation of 5! would proceed as shown in Fig. 9.10. Figure 9.10 (2) shows how
the succession of recursive calls proceeds until 11 is evaluared to be 1, which terminates the
recursion. Figure 9.10 (b) shows the values returned from each recursive call to its caller
until the final value is calculared and rerurned.

Figure 9.11 uses recursion to calculate and print the factorials of the integers 0 to 10.
The recursive function factorial first tests (line 24) whether a terminating condition is
true, Le., whether number is less than or equal to 1. If so, factorial returns 1, no further
recursion is necessary and the function returns. If number is greater than 1, line 27
expresses the problem as the product of number and the value rerurned by a recursive call
to factorial evaluating the factorial of number - 1. Note thar factorial(number - 1)
is a simpler problem than the original calculation, factorial(number).

Function factorial (lines 22-28) receives as its argument the value for which to cal-
culate the factorial. As can be seen in the screen capture in Fig. 9.11, factorial values
become large quickly.

332

{a) Séqéence of recursive calis.

Fig. 9.10 | Recursive evaluation of 5!.

factoriall i

Internet & World Wide Web How to Program

Final value = 120

5% 24'% 120 is refurned

4l = 4% 6= 245 retumned
3*25655 retumed

‘2= 2% | = 2is retumed

| is returned

(b} Values returned from each recursive cail.

unction aqtqriéT (number) -

if ¢ number <= 1) 7/ base case’” :

raturn: 130 -

Fig. 9.11 |

ot

Factorial calculation with a recursive function. (Part | of 2.)

JavaScript: Functions 333

Factorials of 1 to 10

o

H
11
2
1§
24
120
{720
5040
40320

1 362880
101 3628800

r—

Fig. 9.11 | Factorial calculation with a recursive function. (Part 2 of 2.)

Common Programming Error 9.6

Forgerting to return a value from a recursive function when one is needed results in a logic ervor.

Common Programming Error 9.7

Omitting the base case and writing the recursion step incorrectly so that it does not converge on
the base case are both errors that cause infinite recursion, eventually exhausting memary. This
situation is analogous to the problem of an infinite loop in an iterative (nonrecursive) solution.

Error-Prevention Tip 9.3

Internes Explorer displays an error message when a script seems to be going into infinite recur-
sion. Firefox simply terminates the script after detecting the problem. This allows the user of the

web page to recover from a script that contains an infinite loop or infinite recursion,

9.11 Recursion vs. Iteration

In the preceding section, we studied a function that can easily be implemented either
recursively or iteratively. In this section, we compare the two approaches and discuss why
you might choose one approach over the other in a particular situation.

Both iteration and recursion are based on a control statement: Iteration uses a repe-
tition starement (e.g., for, while or do...while); recursion uses a selection statement
(e.g., if, if...eTse or switch). Borh iteration and recursion involve repetition: Iteration

334 Internet & World Wide Web How to Program

explicitly uses a repetition statement; recursion achieves repetition through repeated
funcrion calls. Iteration and recursion each involve a termination test: Iteration termi-
nates when the loop-continuation condition fails; recursion terminates when a base case
is recognized. [teration both with counter-controlled repetition and with recursion grad-
ually approaches termination: Iteration keeps modifying a counter until the counter
assumes a value that makes the loop-continuation condition fail; recursion keeps pr-
oducing simpler versions of the original problem until the base case is reached. Both iter-
ation and recursion can occur infinitely: An infinite loop occurs with iteration if the
loop-continuarion test never becomes false; infinite recursion occurs if the recursion step
does not reduce the problem each time via a sequence that converges on the base case or
if the base case is incorrect.

One negative aspect of recursion is that function calls require a certain amount of time
and memory space not directly spent on executing program instructions. This is known as
function-call overhead. Because recursion uses repeated function calls, this overhead
greatly affects the performance of the operation. In many cases, using repetition statements
in place of recursion is more efficient. However, some problems can be solved more ele-
gantly (and more easily} with recursion.

Software Engineering Observatlon 9.6

’ Any pm/}lc'm that can be solved umrswﬂ'y can also be solved zrcmtwely (nonrfcurszr*ely) A

< ecursive approach is normally chosen in preference to an itevative approach when the recursive
approach more naturally mirrors the problem and results in a program that is easier to
understand and debug. Another reason to choose a recursive solution is that an iterative solution
#idy not - o apparent.

S Perfprmance Tlp 9.1

| Avoid using recursion in perfamame—orxemed situations. Recursive calls take time and consume
additional memory.

Common Programm:ng Error 9.8

Arfzdmm!fy /mvmg a nenrecursive ﬁmcrzwz call :rsetf vither directly, or indirectly through
another function, can cause infinite recursion,

In addition to the Factorial function examnple (Fig. 9.11), we also provide several
recursion exercises—raising an integer to an integer power (Exercise 9.20), visualizing
recursion and sum of two integers (Excrcise 9.21). Also, Fig, 14.26 uses recursion to
traverse an XML document tree.

9.12 Web Resources

www . deitel.com/javascript/

The Deitel JavaScript Resource Center contains links to same of the best JavaScript resources on the
web. There you'll find categorized links to JavaScript tools, code generators, forums, books, libraries,
frameworks and more. Also check out the tutorials for all skill levels, from introducrory to advanced.
Be sure to visit the related Resource Centers on XHTML (www. deitel. com/xhtmi/) and CSS 2.1
(www.deitel.com/css21/).

n lavaScript: Functions 335

Summary .
Section 9.1 Introduction’ . R L
» The best way to develop and maintain a large program is to construct it from small, simple pieces,
or modules. This technique is called divide and conquer.

Section 9.2 Program Modules in JavaScript . - :

» JavaScript programs are written by combining new functions that the programmer writes with
“prepackaged” functions and objects available in JavaScript. '

« The term method implies that the function belongs to a particular object. We refer to functions
that belong to a particular JavaScript object as methods; all others are referred to as functions.
o JavaScript provides several abjects that have & rich collection of methods for performing common
mathematical calculations, string manipulations, date and time manipulations, and manipula-
tions of collections of data called arrays. These objects make your job easier, because they provide

_many of the capabilities programmesrs frequently need.

+ Whenever possible, use existing JavaScript objects, methods and functons instead of writing new
ones. This reduces script-development time and helps avoid introducing errors.

« You can define functions that petform specific tasks and use them at many points in 2 script.
These functions are referred to as programmer-defined funcrions. The actual statements defining
the function are written only once and are hidden from other functions. -

« Functions are invoked by writing the name of the function, followed by a lefc parenthesis, fol-
lowed by a comma-separated list of zero or more arguments, foliowed by a right parenthesis.

« Mcthods are called in the same way as functions, but require the name of the object to which the
method belongs and a dot preceding the method namc. '

« Function (and method) arguments may be constants, variables or expressions.

Section 9.3 Programmer-Defined Functions

v All variables declared in function definitions are local variables—this means:that they can be
accessed only in the functi: ~ in which they are defined.

+ A function’s parameters are considered to be focal variables. When a function is called, the argu-
ments in the call are assigned to the corresponding parameters in the function definition.

+ Code that is packaged as a function can be executed from several locations in a program by calling
the function. o

« Each function should perform a single, well-defined task, and the name of the function should
express that task effectively. This promotes software reusability.

Section 9.4 Function Definitions _ , R

» The recurn statement passes information from inside a function back to the point in the program
where it was called. _ 7

« A function must be cafled explicitly for the code in its body to execute.

+ The format of a function definition is

function function-name parameter-list)
{

declarations and statements

} o

336 Intetnet & World Wide Web How to Progam -

* There are three ways to return control to the ‘poinc at whiich ﬁmctlon was. invokéd. Ifthe fune-
tion does not recurn a result, control recurns when the program reaches the function-ending righs
brace or by executing the statement return;. If the fusiction does return a'tesuly; the statement

- return Expression; enirns the value of expression tothe caller; 7 o

Section 9.5 Random Number Generation -

* Mecthod random gencrates a floating-point value from 0,0 up 16, but notiricluding, 1.0,

* Random integers in a cértain range can be generated by scaling and shifring the values returned-
by random, then using Math.floor to convert them to integers, The scaling factor determines the
size of the range (i.c. a scaling factor of 4 rrieans four possible integers): The shift number is added
to the result to determine wherethe range begins (i.c. shifting the numibers by 3 would give num-

Section 9.6 Example: Game of Chance. .~
* JavaScript can execute actions in responseto the user’s interaction with.a GUI component in-an
XHTML form. This is seferred 10 as GUleventhandling. .. -~ - - : .

* An XHTML element’s oncl¥ck anribute indicates the action to take when the uscr of the XH-

TMLdanmcntchksonthf;clcman R e T A S
'+ Inevent-driven programmiing, the wser inccracts with a GUI ‘eomponerit; the script is notified of
‘the event and the script processes .méwmt;_ﬂt_w’s{mmrx_:ﬁoﬁfﬁthﬁm GUI “drives” the pro--

- gram. The functon that is called when an event.occurs is known s anievent-handling function

orevent handler, .- .

* The getkTenentayId method, given an id as in arguinent, finds the XEFTML clemenc with 2
matching 1d arribute and returns a JavaScripe object representing theelement.

* The va'lue property of a JavaScriptobject rgprcse_n_;i_ng_@jXI;i"fML:tm_gt.;inpu_t element specifies
thetoxt todisplay in the text field. T ¢ o B

* Using an XHTML centainer (c.g. div, span,) object’s innerHIML property, we Gani use a script.
o set the contents of the element. .. T L S TR

Section 9.7 Anosher Evample: Random Image Goneraror

* - We can use random number generation ta randomly select from a number of images in order to

 display a random image each time a page loads. -

Section 9.8 Scope Rules T ' '
*Each identifierin a'program has a scope: ‘The scope of 4n identifier for a variable or function is
the portion of the program in which the identifier ¢in be refereniced, =7 ©
* Global variables or script-level variables (i.c., variables declared in the head element of the XH-

TML document) are accessible in any part of a script and are said 1o have global scope. Thus ev-
“ery funciion in the script can‘ potentially se the variables. = ©o o S
* Identifiers declared inside a function have function (or local) scope and can be used only in that
function. Function scope begins with the openirigleft brace (1) oF the filricrion inwhich the iden-
 tifier is declared and cnds at the terminating sight braﬁev(})"afﬁitzﬁmcdnm-ligal variables of a

function and function parameters have function scope.

* Ifa local variable in a function has the same nameasaglnﬁaimlable,thc globa] variable is “hid-
* The ontoad property of the body clement calls-an event kandler when the body of the XHTML
docummt-i‘s-bompictcly'imdqd into the browsef window, © T

_ ja_vaSéript: Functions 337

Section 9.9]awSmt Global Funmm : '
» JavaScript provides scven gfobal fancrions as part of a G1 obal obyect This object canmnsail thi:
global variables in the script; all the. user~deﬁnesd functions in the scripe and all thc bmle—m gobal
functions ﬁmcuons listed mFig 99. ..

* You do not need touse thc G'#aba% eb]ect é’ rectly, JavaScript uses it for you.

Secﬁon?loﬂmmn f :
* A recursive function calls itself, clther dnectiy, or indirectly through another functmn

o A recursive furiction knows how to solve only the simplest case, or base case. If the function is
called with a base case, it reurns a result, T the function is called with 2 more -complex problcm,
it knows how to divide the problem into two conceptual pieces—a picce that the function knows
how to process {the base case) dnd a snnplcr or smaller version of the ongmal problem. ‘

» The function invokes (calls) 2 fresh copy of itself to go to work on the smaller pmbl:m. this
invocation is referred to as a recursive call, or the recursion step.

+ The recursion step- Fxecutes whdc the engmal call to the function is still open {i.e., it has not fin-
ished executing). - : : ‘ &

*» For recursion eventualiy 0 termmate, each time the function calls itself with a simpber version of
the original problem, the sequence: of stmialler and smaller problems must converge on the base

. case. At that point, the function recognizes the base case, returnsa result 1o the previous copy of
- the function, and a sequénce of refurns énsucs up the line until the original ﬁ.mcnon caii even-
tually renurnis the. finai mu}t 10 r.he ca!lcr -

Smw 9, I T Recumon vs; Itemmu S

» Both iferation and récursion invalve repetition:- Treration explicidy usesa repctmon statemenr

. ftecursion a.ch:eves repetition ’duough repeatcd function calls. _

L 'Itcr;mon and mcursxd cach m_volvé y'termination test: Treration terminates whcn the loop»ccm—

t 16 fat]s, mc" siori ‘terminates when a base case is- recognized. '

] tnter uhti the countet assumes 2 value that makes the Toop-coni-
: tmuanon condmon Fa:l recurs:on kecps préducmg simpler vemons af thc onginal problem
unul the base case is rcachcci

¥ peatcdly mvokes the mcchznmm and conscquemly, the overhead of func:uoa calls.
&n beex terms of proccssor me and memory space.

e Some problcms can bc um:iersmod or solvcd more casnly wlth recursion than ﬁvith ncemnon

Termmologiy SR
* argument maﬁmcuoncaﬂ - divide and conguet
base case . L ©odot ()
binary format - . o dot notation 5
block e : S . element of chance”
“called fapction -~ - Y : escape function ™
caller o evatfungtion o
calling finetion o o0 clement efchancc SR
compumr—mmdmmﬂm((lﬁl)_»“--- L sl bR £
constant. - : S __'.'-'evcnthmdier ST ;
'"cumergconthcbas,cmse R L :;m:nt-handimgﬁmonnn e

:“’PY“"’"’““*‘“ Csnii0 i oventdriven programming

'répcnuor_x anid récursion boch gradually approach seeminations |

338

floor method of the Math object
funcrion

function (local) scope
function argument

function body

function cail

function definidon

function name

function paramerer
function-call operaror ()
getElementById method of the document object
Global object

global scope

global variable

hexadecimal

innerHTML property

invoke a function

isFinite function

isNaN function

iterative solution

listén for events

local scope

local variable

max method of the Math object
method

modularize a program

module

object

Self-Review Exercises

Internet & World Wide Web How to Program

octal

onclick event

onToad event

parameter in a function definition
parseFloat function
parselInt funcrion
programmer-defined function
probabilicy
programmer-defined function
radix

random method of the Math object
random-number generation
recursion '
recursive funcrion

recursive step

registering an event handler
respond to an event

return statement

scaling

scaling facror

scope

script-level variable

shifting value

simulation

software engineering

software reusabiliry

unescape function

value property of an XHTML. text field

9.1 Fillin the blanks in each of the following statements:
a) Program modules in JavaScript are called

b} A function is invoked using a(n)

¢} A variable known only inside the function in which it is defined is called ai{n}

d) The
sion back to the calling function.
€) The keyword

statement in a called function can be used to pass the value of an expres-

indicates the beginning of a function definirion.

9.2 For the given program, state the scope (either global scope or function scope) of each of the
following elements:
a} The variable x.
b) The variable y.
<} The funcrion cube.
d) The function eutput.

